A dominant mutation in the pea PHYA gene confers enhanced responses to light and impairs the light-dependent degradation of phytochrome A.
نویسندگان
چکیده
Phytochrome A (phyA) is an important photoreceptor controlling many processes throughout the plant life cycle. It is unique within the phytochrome family for its ability to mediate photomorphogenic responses to continuous far-red light and for the strong photocontrol of its transcript level and protein stability. Here we describe a dominant mutant of garden pea (Pisum sativum) that displays dramatically enhanced responses to light, early photoperiod-independent flowering, and impaired photodestruction of phyA. The mutant carries a single base substitution in the PHYA gene that is genetically inseparable from the mutant phenotype. This substitution is predicted to direct the replacement of a conserved Ala in an N-terminal region of PHYA that is highly divergent between phyA and other phytochromes. This result identifies a region of the phyA photoreceptor molecule that may play an important role in its fate after photoconversion.
منابع مشابه
A New Arabidopsis Mutant Hypersensitive in Phytochrome A–Dependent High-Irradiance Responses
To identify specific mutants for components of phytochrome A (phyA) signaling in Arabidopsis, we established a light program consisting of multiple treatments with alternating red and far-red light. In wild-type seedlings, irradiation with multiple red light pulses can reduce the amount of phyA, which in turn decreases the high-irradiance responses (HIRs) mediated by the subsequent treatments w...
متن کاملeid1: a new Arabidopsis mutant hypersensitive in phytochrome A-dependent high-irradiance responses.
To identify specific mutants for components of phytochrome A (phyA) signaling in Arabidopsis, we established a light program consisting of multiple treatments with alternating red and far-red light. In wild-type seedlings, irradiation with multiple red light pulses can reduce the amount of phyA, which in turn decreases the high-irradiance responses (HIRs) mediated by the subsequent treatments w...
متن کاملLight-induced nuclear translocation of endogenous pea phytochrome A visualized by immunocytochemical procedures.
Although the physiological functions of phytochrome A (PhyA) are now known, the distribution of endogenous PhyA has not been examined. We have visualized endogenous PhyA apoprotein (PHYA) by immunolabeling cryosections of pea tissue, using PHYA-deficient mutants as negative controls. By this method, we examined the distribution of PHYA in different tissues and changes in its intracellular distr...
متن کاملBlue light induces degradation of the negative regulator phytochrome interacting factor 1 to promote photomorphogenic development of Arabidopsis seedlings.
Phytochrome interacting factors (PIFs) are nuclear basic helix-loop-helix (bHLH) transcription factors that negatively regulate photomorphogenesis both in the dark and in the light in Arabidopsis. The phytochrome (phy) family of photoreceptors induces the rapid phosphorylation and degradation of PIFs in response to both red and far-red light conditions to promote photomorphogenesis. Although ph...
متن کاملMissense mutation in the amino terminus of phytochrome A disrupts the nuclear import of the photoreceptor.
Phytochromes are the red/far-red photoreceptors in higher plants. Among them, phytochrome A (PHYA) is responsible for the far-red high-irradiance response and for the perception of very low amounts of light, initiating the very-low-fluence response. Here, we report a detailed physiological and molecular characterization of the phyA-5 mutant of Arabidopsis (Arabidopsis thaliana), which displays ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Plant physiology
دوره 135 4 شماره
صفحات -
تاریخ انتشار 2004